Complexation of membrane-bound enzyme systems.

نویسندگان

  • D Müller-Enoch
  • H Gruler
چکیده

The effect of changes in the N-terminal membrane-binding domain of cytochrome P450 forms and NADPH-cytochrome P450 reductase types on the cytochrome P450-dependent monooxygenase activities, has been examined. The nifedipine oxidase activity of two human P450 forms (CYP3A4, CYP3A4NF14) which differ only in their primary structure by ten amino acid residues in the N-terminal membrane-binding domain, yields nearly the same catalytic cycle time tau =2.65 +/- 0.15 s, due to their identical cytosolic catalytic protein structure. In contrast, the complex formation process ([P450]+[reductase] <--> [complex]) described by the dissociation constant KD, at high substrate concentration ([S]>>KS) and low product concentration ([P]<<KP) is determined to be KD/[P4501]o = 0.3 and 2.0, respectively. These values reflect large differences in the affinity of both P450 forms for the same type of reductase which is only due to their modified membrane-binding domains. In the present work, it has been shown for the first time, that the membrane-binding domain of cytochrome P450 enzymes determines the complexation process of the binary P450:reductase system. Furthermore, the nifedipine oxidase activity of the human CYP3A4 form reconstituted with two different types of reductase from human and rabbit also has the same catalytic cycle time tau = 2.65 +/- 0.15 s. This result is based on the similarity of the primary structure of the cytosolic catalytic domain of both reductase types. However, the complex was formed with different dissociation constants of KD/[P450]o = 0.3 and 4.7, respectively. This different affinity of both reductase types to the same P450 form is interpreted as a consequence of the substantial alteration of the amino acids in the N-terminal primary structure of their membrane-binding domains. 7-Ethoxycoumarin O-deethylase activity of two rat P450 forms (CYP2B1 and CYP1A1) were reconstituted with the same rat reductase. The catalytic cycle time for each P450 form is tau = 1.8 and 0.6 s, respectively. Correspondingly, the complex formation process controlled by the dissociation constant KD has changed from KD/[P450]o = 2.3 to 1.7, respectively. This is because both forms differ in their cytosolic as well as in their membrane-binding domains.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Effect of Complexation Reaction Constant on the Separation of Propylene/Propane by Supported Liquid Membrane

Traditional systems for olefin/paraffin separation, like low-temperature distillation, are expensive and very energy consuming, and therefore, alternative separation methods are desired. Facilitated transport membranes are new tools for this separation to be substituted in large scale separation of olefin-paraffin mixtures. To design a membrane process for olefin-paraffin separation, equilibriu...

متن کامل

Proteases Detection of invitro Culture of Midgut Cells from Hyalomma anatolicum anatolicum (Acari: Ixodidae)

  Proteases play a key role in protein digestion in ticks and other haematophagous insects. Our understanding of blood meal digestion in digestive system of ticks can be very useful for better understanding of basic rules for control of ticks. Cells of the midgut endocytose blood components. Blood proteins uptake by midgut cells, suggesting the presence of proteases in the midgut cells. In this...

متن کامل

بررسی اثر متابولیت‌های فنیل‌آلانین بر میزان اتصال هگزوکیناز تیپ I به میتوکندری مغز موش صحرایی

    Background & Aim: Hexokinase type I is the most predominant form of the enzyme in brain. It binds reversibly to the outer mitochondria membrane. In normal condition the major part of the enzyme binds to the membrane. Membrane bound form of the enzyme is more active than the soluble form, so this is more a control mechanism of the enzyme activity. Those metabolites that affect the binding or...

متن کامل

PRODUCTION, RELEASE AND THERMAL CHARACTERIZATION OF CELLULOLYTIC ENZYME FROM CELLULOMONAS sp. STRAIN "0"

Cellulase production by a Cellulomonas sp., isolated in 1985 from forest humus soil along the border of the Caspian Sea in Iran, was investigated. This strain secreted endo-and exo-cellulases in the culture medium, but some of the enzymes produced remained cell membrane bound. Cell bound enzymes were released by various treatments. The highest amount of endo-glucanase (up to 95%) and exo-gl...

متن کامل

Activation and inhibition of Na/K-ATPase by filipin-cholesterol complexation. A correlative biochemical and ultrastructural study on the microsomal and purified enzyme of the avian salt gland.

The Na/K-ATPase-rich microsomal fraction and purified Na/K-ATPase membranes of the salt-stressed avian salt gland were studied at defined filipin/cholesterol molar ratios (F/C) using enzyme assay and electron microscopy including negative staining, thin sectioning and freeze fracturing. Comparative examinations of detergent-treated microsomal fractions and the use of electron microscopic tracer...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Zeitschrift fur Naturforschung. C, Journal of biosciences

دوره 55 9-10  شماره 

صفحات  -

تاریخ انتشار 2000